Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543547

RESUMO

Protaetia brevitarsis larvae are farm-raised for food, are used in traditional East Asian medicine, and convert organic waste into biofertilizers. Here, the comparative analysis of the gut microbiota of third-instar larvae obtained from five different farms was investigated using 16S rRNA microbial profiling. Species richness, evenness, and diversity results using α-diversity analysis (observed species, Chao1, Shannon, Simpson) were similar between farms, except for those between the TO and KO farms. ß-diversity was significantly different in distribution and relative abundance between farms (PERMANOVA, pseudo-F = 13.20, p = 0.001). At the phylum level, Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota were the most dominant, accounting for 73-88% of the hindgut microbial community. At the genus level, Tuberibacillus, Proteiniphilum, Desulfovibrio, Luoshenia, and Thermoactinomyces were the most abundant. Although oak sawdust was the main feed component, there were large variations in distribution and relative abundance across farms at the phylum and genus levels. Venn diagram and linear discriminant analysis effect size analyses revealed large variations in the hindgut microbial communities of P. brevitarsis larvae between farms. These results suggest environmental factors were more important than feed ingredients or genetic predisposition for the establishment of the intestinal microbiota of P. brevitarsis larvae. These findings serve as reference data to understand the intestinal microbiota of P. brevitarsis larvae.

2.
Viruses ; 16(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400060

RESUMO

Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Filogenia , Aves
3.
PLoS One ; 18(11): e0294031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930983

RESUMO

Riemerella (R.) anatipestifer poses a significant threat to ducks, resulting in mortality rates ranging from 5-75%. This disease is highly infectious and economically consequential for domestic ducks. Although other avian species, such as chickens, also display susceptibility, the impact is comparatively less severe than in ducks. IL-17A has a pronounced correlation with R. anatipestifer infection in ducks, which is less in chickens. This study performed an in vitro transcriptome analysis using chicken splenic lymphocytes collected at 4-, 8-, and 24-hour intervals following R. anatipestifer stimulation. The primary objective was to discern the differentially expressed genes, with a specific focus on IL-17A and IL-17F expression. Moreover, an association between specific miRNAs with NOS2 and CCL5 was identified. The manifestation of riemerellosis in chickens was linked to heightened expression of Th1- and Th2-associated cells, while Th17 cells exhibited minimal involvement. This study elucidated the mechanism behind the absence of a Th17 immune response, shedding light on its role throughout disease progression. Additionally, through small RNA sequencing, we identified a connection between miRNAs, specifically miR-456-3p and miR-16-5p, and their respective target genes NOS2 and CCL5. These miRNAs are potential regulators of the inflammatory process during riemerellosis in chickens.


Assuntos
MicroRNAs , Doenças das Aves Domésticas , Riemerella , Animais , Interleucina-17/metabolismo , Riemerella/genética , Galinhas/genética , Células Th17/metabolismo , Baço/metabolismo , MicroRNAs/genética , Patos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...